A Theoretical Foundation for Scheduling and Designing Heterogeneous Processors for Interactive Applications
نویسندگان
چکیده
To improve performance and meet power constraints, vendors are introducing heterogeneous multicores that combine high performance and low power cores. However, choosing which cores and scheduling applications on them remain open problems. This paper presents a scheduling algorithm that provably minimizes energy on heterogeneous multicores and meets latency constraints for interactive applications, such as search, recommendations, advertisements, and games. Because interactive applications must respond quickly to satisfy users, they impose multiple constraints, including average, tail, and maximum latency. We introduce SEM (Slow-to-fast, Energy optimization for Multiple constraints), which minimizes energy by choosing core speeds and how long to execute jobs on each core. We prove SEM minimizes energy without a priori knowledge of job service demand, satisfies multiple latency constraints simultaneously, and only migrates jobs from slower to faster cores. We address practical concerns of migration overhead and congestion. We prove optimizing energy for average latency requires homogeneous cores, whereas optimizing energy for tail and deadline constraints requires heterogeneous cores. For interactive applications, we create a formal foundation for scheduling and selecting cores in heterogeneous systems.
منابع مشابه
An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملTask-to-processor allocation for distributed heterogeneous applications on SMP clusters
Today, distributed architectures are based on multi core SMP nodes. Several middleware, like the FlowVR framework, exist to design interactive and heterogeneous distributed applications for these architectures. FlowVR defines an application as a set of codes mapped on cluster nodes and linked by a communication and synchronization network. But if we control the way modules are synchronized and ...
متن کاملVirage : Designing an Interactive Intermedia Sequencer from Users Requirements and Theoretical Background
We present the unrolling of the Virage project and its main achievement : a sequencer for authoring and performing interactive intermedia scenarii. This two years long project addressed the question of authoring and controlling interactive scenarii dealing with several heterogeneous digital media, in the context of the performing arts. The project involved multidisciplinary members including ar...
متن کاملEnergy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors
A heterogeneous multicore processor has several cores that share the same instruction set architecture but run at different speeds and power consumption rates, offering both energy efficient cores and high-performance cores to applications. We show how to exploit such processors to make significant energy reduction to serve large interactive workloads such as web search by carefully scheduling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014